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0BABSTRACT 
Many online mapping applications let users define routes, 
perhaps for sharing a favorite bicycle commuting route or 
rating several contiguous city blocks. At the UI level, 
defining a route amounts to selecting a fairly large number 
of objects – the individual segments of roads and trails that 
make up the route. We present a novel interaction technique 
for this task called path selection. We implemented the 
technique and evaluated it experimentally, finding that 
adding path selection to a state-of-the-art technique for 
selecting individual objects reduced route definition time by 
about a factor of 2, reduced errors, and improved user 
satisfaction. Detailed analysis of the results showed path 
selection is most advantageous (a) for routes with long 
straight segments and (b) when objects that are optimal 
click targets also are visually attractive.   

10BAuthor keywords 
Path selection, selection techniques, bubble targets, bubble 
cursors, routing.  

11BACM classification keywords 
H5.2. [User Interfaces]: Graphical user interfaces, 
interaction styles. 

1BINTRODUCTION 
Over the past few years, mapping applications have become 
popular on the World Wide Web. Systems like MapQuest 
and Google Maps let users search and browse within 
geographic regions. Many also allow users to define routes 
and share them with other users. This is particularly popular 
in recreational applications like bicycling, running, and 
hiking, where individual users have useful personal 
experience and are eager to share it [X17X]. 

Typically, systems that support route definition do so with 
an interface that lets users indicate a route by drawing it on 

top of the map. However, existing route definition 
techniques have several problems. First, nearly all of them 
are built on top of Google Maps or one of its peers. As we 
have pointed out previously [X18X], these systems have a 
major limit: users cannot directly interact with the actual 
geographic data. This precludes important functions such as 
tagging and rating geographic objects, which enable 
powerful features like personalized route finding. For the 
current purpose, the relevant point is that users create routes 
by drawing lines in a completely separate layer overlaid 
atop the “real” road segments; i.e., the only link between 
the routes and the roads is visual co-location. 

The Cyclopath system (http://cyclopath.org) does let users 
interact with the geographic data; a user defines a route by 
selecting the edges within the transportation graph (i.e., 
road or trail blocks) that comprise the route. However, this 
raises a second, different problem: as Figure 1 shows, even 
short routes consist of many individual edges. This turns 
route definition into a tedious multiple selection task.  

 

Figure 1: This short route – less than 2 miles – includes 
about 20 distinct edges of the transportation graph. 
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Our work addresses this problem. We designed and 
implemented path selection, a novel technique that 
dynamically computes the shortest path from the most 
recently selected node to the node nearest the cursor. 
Continuously updated visual feedback shows the shortest 
path, and when a user selects the next node, the entire path 
is added to the route. While developed for route selection, 
we believe this technique is useful for any application with 
graph data where users want to define paths through that 
graph. We empirically compared this technique to a state-of-
the-art single selection technique, and found that adding 
path-finding results in faster route definition and greater 
user satisfaction. Detailed analysis identified structural 
properties of routes and nodes that determine how much 
path selection will help; for example, long straight 
segments within a route result in greater advantages.  

The remainder of the paper is organized as follows. First, 
we survey related work. Next, we describe the context for 
our research and detail the selection tools we implemented. 
We then present the design of  our experimental evaluation, 
show basic performance and user satisfaction results, and 
analyze the results in detail. Lastly, we identify areas for 
future research and conclude with a brief summary. 

2BRELATED WORK 

12BMapping and routing applications 
Many applications let users define and share routes through 
a road or trail map. A typical function is to let communities 
of users share knowledge that is valuable and hard to come 
by. For example, one could share a Google Maps tour of 
historical sites in Boston or a Bikely.com route of a safe 
bicycle commute into downtown. Counts & Smith created 
a research prototype aimed at sharing “recreational” routes, 
e.g., for runners, cyclists, or skiers[X7 X]. Their system let 
users capture routes with GPS devices and upload route 
data to a map interface. As mentioned, in both the route-
drawing and GPS-upload technique, the routes are weakly 
associated with the underlying geographic graph, linked 
only by visual co-location. We want routes to be defined 
directly in terms of the geographic data. This (a) requires 
exposing the geographic data to users for manipulation, and 
(b) transforms the process of route definition into a multiple 
selection task. We elaborate this point in our discussion of 
Cyclopath below. 

Recently, Google Maps enhanced its automated route finder 
to allow a user to modify a route by moving a point on the 
route, causing the route finder to compute a new route from 
the start to destination that includes the new intermediate 
point. We compare this interesting technique to ours in the 
Discussion section below. 

13BSingle target selection 
The problem of selecting single targets – e.g., objects in a 
drawing tool or items in a menu – is one of the most studied 
in HCI. Work typically is organized around Fitts’ 

Law [X9 X, X14X]. The intuition of Fitts’ Law is simple: it says 
that the time to acquire a target increases as the distance to 
the target increases, and decreases as the size of the target 
increases. Many research projects have sought to create 
improved selection techniques, seeking ways to either 
increase target size or decrease distance to the target.  

To reduce the distance required to move the cursor to a 
target, researchers have invented techniques such as 
analyzing cursor motion to bring virtual proxies of targets 
towards the cursor [X3X] or jumping the cursor across empty 
spaces directly to potential targets [X11X]. However, neither of 
these techniques works well in interfaces that are dense 
with many potential targets – which is precisely what a map 
interface is, with targets like roads and points of interest 
often within a few dozen pixels of each other. 

Increasing target size does not require changing the visual 
display. Instead, effective selection size can be manipulated 
by creating a larger activation zone around either targets [X6X, 
X15X, X16X, X20X] or the cursor [X12X, X19X].  Some techniques [e.g., X4X] 
combine distance decreasing and size increasing. Again, 
however, these techniques tend to suffer in target-dense 
environments: as a user moves toward a goal target, 
intervening targets slow down the cursor. 

Bubble cursors [ X10X] are another technique for increasing 
cursor activation area. As a user moves the cursor, the 
system computes and displays a “bubble” that is centered 
around the cursor and envelops the nearest target. The area 
for any target is computed using Voronoi regions [X1 X], which 
take into account the distance of that target to other nearby 
targets. The dynamic area computation makes this method 
work better in target-dense environments. Experiments 
showed significant performance benefits; however, bubble 
cursors do not address the problem that route selection 
requires clicking on many individual targets. 

3BRESEARCH CONTEXT AND DESIGN RATIONALE 
Cyclopath [X18X] is the context for our research. A web-based 
mapping application with an interface that works similarly 
to Google Maps, Cyclopath is targeted to the route finding 
needs of bicyclists. The critical difference is that Cyclopath 
is a geowiki, meaning that all data can be edited by users. 
Users can annotate and rate edges of the transportation 
graph (i.e., segments of road or trail between two nodes), 
and can edit – modify, delete, and add – the geometry and 
topology of the graph and attributes of its edges. 

In Cyclopath, users do not simply draw lines to indicate a 
route, they select objects (nodes or edges) in the map. Users 
define routes for two main purposes: 
• Mass rating or annotation of a sequence of edges, e.g., 

rating the whole sequence as “good” or adding a note 
about heavy traffic during morning rush hour. 

• Sharing routes with other users, e.g., creating and 
sharing a favorite ride by the river (a planned feature 
but one that is not yet implemented). 
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As noted above, the simple 2-mile route shown in XFigure 1X 
consists of about 20 individual edges; some routes can be 
considerably longer, making route definition techniques 
that require users to select dozens or hundreds of individual 
objects tedious. 

When analyzing design possibilities for route selection 
tools, we considered two main approaches. The first was 
making it easy to select individual nodes; we looked to 
state-of-the-art work on selecting individual targets, 
specifically bubble cursors [X10X] and bubble targets [X6X].  

The second approach was to reduce the number of nodes 
users had to select to define a path. We were inspired by 
Cyclopath’s route-finding feature. After a user selects one 
node (the anchor) and then moves the cursor, the system 
continuously computes the shortest path from the anchor to 
the node nearest the cursor. Then, if the user clicks, the 
entire shortest path is added to the route (see Figure 2). 

Taking the cross product of these two approaches yields a 
2×2 design space, as shown in XTable 1X. While we believed 
that a tool that used both bubble targets and path-finding 
would work best, implementing all four designs let us 
quantify and compare the benefits of each of the pure 
techniques and how much they improve over a baseline.  
We next present design details for each of the four tools.  
 

Path-finding? Bubble 
targets? No Yes 

No  CTRL-CLICK PATH 

Yes BUBBLES BUBBLE-PATH 

Table 1: Design space for path selection tools 
 
CTRL-CLICK: Standard multiple selection 
For a simple baseline, we chose the technique for selecting 
multiple objects that is implemented in widely used 
applications like file browsers and drawing programs: 
clicking on an edge selects it. (Selected edges are 
surrounded by a thick blue outline in all tools.) Clicking on 
an edge with the CTRL key down toggles its selection state: 
if it was not selected, it is added to the set of selected edges, 
and if it was selected, it is removed. 

This tool does not enforce route semantics. That is, a user 
can select non-contiguous edges and can select the edges on 
a route in any order. We did not expect this tool to perform 
well. Rather, it served as a state-of-the-practice baseline for 
comparison to the advanced tools. 

BUBBLES: Bubble targets / cursors 
The next tool facilitates the selection of individual targets, 
and is based on the bubble cursors and bubble targets 
techniques.  While one might think we could simply modify 
CTRL-CLICK to use bubble targets (cursors), the properties of 
our mapping interface forced several revisions.  

First and most important, we decided it would be visually 
awkward to draw bubbles around edges. Because edges  
have irregular shapes and varying lengths, bubbles of 
different sizes and shapes would be continually appearing, 
growing, shrinking, and disappearing. Thus, we decided to 
make nodes the targets of selection. To select an edge, a 
user must select both of the edge’s nodes in turn. 
(Implementing bubble targets with edges as targets would 
be an interesting alternative; creating bubbles that are 
visually appealing and readily comprehensible certainly 
poses a challenging visual design problem.) 

Second, making nodes the targets of selection requires 
using limited knowledge of the transportation graph to 
constrain selection. After selecting one node, the only valid 
targets are nodes directly reachable (via a single edge) from 
the just-selected node. Continually updated visual feedback 
(small orange circles) indicates valid targets.  

Finally, we felt that warping the cursor would be visually 
confusing and unappealing in the target-dense environment 
of a mapping application. Therefore, we chose to draw 
bubble targets around the targeted node using the Voronoi 
method of Grossman [ X10X] to compute the area of the bubble.     

As the BUBBLES and CTRL-CLICK tools differ in several ways, 
the reason for any performance differences between the two 
will not be clear. However, testing both still furthers our 
research goals, because our primary aim is to compare the 
benefits derived from a state-of-the-research single target 
selection technique (BUBBLES) with our innovative path 
selection technique. CTRL-CLICK serves as a “sanity check” to 
verify that our advanced methods were improvements over 
a very simple technique.  

PATH: Continuous path-finding and visual feedback 
Like the BUBBLES tool, the PATH tool is node-based. 
However, it does not use bubbling; targets (nodes) have the 
same constant size in both visual and motor space. Instead, 
it uses continuous path-finding to let users short-circuit the 
process of selecting each of the many nodes in a typical 
route. Thus, the benefit of this approach is reducing the 
number of selections required to select an entire route. 

At all times during the route selection process, the system 
computes the shortest path through the graph from the last 
selected node (the anchor) to the node nearest the cursor 
(when it is within 40 pixels). It does this using the A* 
search algorithm. When the user clicks on a node, the entire 
shortest path is added to the route.  

The tool shows a preview of what selecting a particular 
node would do: the continuously-updated shortest path 
from the anchor to that node is indicated with a green 
highlight. We call this the path extension. 

14BBUBBLE-PATH: Continuous path-finding + bubble targets 
Our final tool simply combines the properties of the two 
previous tools: bubble targets plus path-finding.  
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15BImplementation details 
Cyclopath is implemented as a Flex application, written in 
the ActionScript language and viewed using the Adobe 
Flash Player browser plugin. All the selection tools are 
implemented in ActionScript and run locally in the browser. 
Thus, even though Cyclopath is web-based, selection does 
not require fetching data from the server. This makes it 
possible for all the selection tools, even the ones that do 
path-finding, to operate without noticeable lag. 

16BPreliminary analysis and terminology 
As we have noted, the obvious advantage of path selection 
is that it can reduce the number of objects that must be 
selected to define a route. The route shown in Figure 2 
below consists of 38 edges; however, with path-finding, 
only 7 selections are needed to select the entire route. We 
use the term optimal to denote the nodes that comprise the 
minimal set necessary to select a route. For a given route, 
we define the optimal selection reduction ratio (OSR ratio) 
as the total number of nodes in the route divided by the 
number of optimal nodes. Routes with many long 
straightaways, i.e., long sequences of contiguous edges that 
are more or less parallel to each other (see Figures 2 and 9 
below), have high OSR ratios. 

However, a high OSR ratio does not guarantee gains from 
using path selection. Path selection imposes a new 
perceptual/cognitive task: users must identify which nodes 
to select. They do this by moving the cursor to the vicinity 
of a candidate, then evaluating the path extension visual 
feedback to determine if (a) the path extension is on the 
desired route, and (b) if it advances the route “far enough” 
(an inherently subjective judgment). Thus, it is possible that 
identifying nodes to select is too much work; if so, path 
selection tools might actually be slower. Put another way: 
path selection suffers when optimal nodes are difficult to 
identify or visually “attractive” nodes are not optimal (we 
investigate below what makes a node attractive). 

Therefore, we evaluate the four tools experimentally, using 
a number of routes with different characteristics.  

4BEXPERIMENT  
The subjects were students and staff at the University of 
Minnesota. We recruited subjects using relevant email lists, 
posters, and personal contacts. We ended up with 15 
subjects, 8 women and 7 men ages 18 to 30. All subjects 
reported themselves to be daily computer users and 
occasional users of Web-based mapping applications. 
Subjects were given a $10 participation incentive.  

The experiment was conducted on a 2.2Ghz MacBook Pro 
with a 15” built-in LCD display at 1440x900 resolution.  
Subjects used a mouse for input. 

17BDesign 
The experiment was a within-subjects design. Each subject 
used all four of the selection tools. We defined 7 different 

routes for the experiment: 2 practice routes and 5 test routes 
for measuring performanceF

1
F. The test routes vary in factors 

such as the number of long straightaways, number of 
corners, node density, etc. The overall experimental flow 
for each subject was: 

• Introduction to the experiment. 
• For each of the four selection tools: 

o Experimenter demonstrated the tool 
o Subject used the tool for 2 practice routes.  
o Subject asked clarification questions (if desired). 
o Subject used the tool for the 5 test routes.  
o Subject completed a user satisfaction survey for that 

tool. We selected (and adapted) a subset of questions 
from the QUIUS survey [X5 X]. 

Each subject had a unique permutation of tool order and test 
route order. For example, one subject may have done the 
test routes in the order 3, 2, 5, 1, 4 (for all tools), and may 
have used the tools in the order BUBBLE, CTRL-CLICK, PATH, 
BUBBLE-PATH. Order of tools for subjects was controlled as 
follows: we generated all 24 possible permutations of the 
four tools, randomized the set, then assigned tool orderings 
to subjects according to this order.   

Routes were indicated with a dark blue line through the 
relevant edges, with start and end nodes marked. Figure 2 is 
an annotated illustration of what a subject might see while 
using BUBBLE-PATH for Experimental Route 2. Route 
selection is complete when a subject selects every edge on 
the route, and no edge not on the route is selected.   

All user interaction events were logged and timestamped. 
Panning and zooming were disabled to create a consistent 
environment for all subjects.  

18BEvaluation metrics 
To compare performance across the tools, we computed the 
following metrics: 
• Time to select a route. 
• Errors: clicks that selected either no node or a node 

not on the route. 
• Number of nodes selected for a route; this is relevant 

only for the path selection tools. 
• Actual selection reduction ratio (ASR ratio): the 

number of nodes in a route divided by the (average) 
number of clicks subjects took to select that route. This 
is relevant only for path selection tools.  

We derive several additional metrics from these basic ones, 
introducing them as appropriate below. 
                                                           
1 In actual use, a desired route is known only to the user 
who is selecting it. However, for experimental purposes, we 
wanted all subjects to use the same routes. 
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Figure 2: The BUBBLE-PATH tool while in the process of selecting Test Route 2. Like BUBBLE-PATH, the BUBBLE tool uses bubble 
targets (but not path selection), and PATH uses path selection (but not bubble targets).  (This figure is best viewed in color.)

5BRESULTS 
We first present basic performance results, then describe 
findings of the user satisfaction survey. We follow with a 
detailed analysis that explains the performance results. 

19BPerformance: Time and errors 
XFigure 3X shows the average time subjects took to complete 
each task (test route) with each tool. There were significant 
differences among the tools for all routes (ANOVA; 
p < .01). Follow-up T-tests showed that all differences 
between pairs of tools for a route were significant, with 
three exceptions. For Routes 3 and 4, BUBBLES and PATH 
were indistinguishable, and for Route 5, BUBBLES and 
BUBBLE-PATH were indistinguishable.  

The number of errors was low for all tools. However, 
ANOVA did show significant differences for each route 
(p ≤ 0.04). As XFigure 4X shows, CTRL-CLICK fared the worst. 
This is what we expected: selecting irregular and varying 
edge shapes is harder, and thus should be more error-prone. 
Follow-up T-tests showed that CTRL-CLICK was worse than 

all the other tools for routes 1, 3, and 5 (p ≤ 0.02), and was 
worse than BUBBLE-PATH for all routes (p < 0.01). BUBBLE-
PATH had the fewest errors for all routes except Route 5, but 
the differences between it and both BUBBLE and PATH were 
not significant, although there were strong trends for routes 
2 and 3. BUBBLE and PATH were roughly comparable: except 
for Route 5, the average number of errors was similar. For 
Route 5, PATH was better than BUBBLE (T-test; p = 0.01). 

We offer a caveat in interpreting these results. As discussed 
below, subjects made many more selections with BUBBLE 
than with path selection tools. Thus, the proportion of 
erroneous clicks made with BUBBLE always was lower than 
PATH, and usually was lower than BUBBLE-PATH. There is no 
obvious right measure – absolute or proportional number of 
errors – the whole point of path selection is to reduce the 
number of clicks needed to select a route. However, the 
proportional analysis confirms an obvious hunch: bubble 
targets make each selection act easier, and path selection 
does not. Therefore, selection errors should decrease for the 
tools that use bubble targets, BUBBLE and BUBBLE-PATH. 
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Figure 3: Task completion times for each route and tool 

20BUser satisfaction: Survey 
XFigure 5X summarizes the survey responses.  There are 
several significant differences, as well as interesting trends.  
BUBBLE-PATH was always either significantly preferred over  
the other tools or statistically indistinguishable from them. 
One notable difference was seen for the “Overall: Terrible 
to Wonderful” question; an ANOVA showed significant 
differences (p < 0.01), and pairwise T-tests showed BUBBLE-
PATH rated higher than all the other tools (p < 0.01).  
Another important difference was for the “Route Speed: 
Slow to Fast” question (ANOVA, p < 0.01), which 
measured how fast users perceived route construction to be. 
There was a trend favoring BUBBLE-PATH over PATH (p = 
0.057), and BUBBLE-PATH was rated significantly higher than 
BUBBLE and CTRL-CLICK (p < 0.01). For the other Overall 
question, “Frustrating to Easy”, there was a trend favoring 
BUBBLE-PATH over PATH (p = 0.08) and BUBBLE (p = 0.09), and 
all three of these tools were significantly higher than the 
baseline CTRL-CLICK (p < 0.01).  

On the other hand, for questions that assessed ease of use, 
simplicity, and reliability, there were no significant 
differences, and BUBBLE-PATH and BUBBLE typically had 
nearly identical means, with PATH somewhat lower. We think 
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Figure 4: Errors for each route and tool 

 
Figure 5: Survey results 

there are two reasons for this. First, PATH presented the 
smallest selection targets to users, and thus an essential part 
of the task – moving the cursor into the target area – was 
difficult. Second, path selection adds an element of 
unpredictability to the selection task. 

6BANALYSIS: WHEN PATH SELECTION DOES (NOT) HELP 
We wanted to understand in more detail the properties of 
routes that led to different levels of benefit for path 
selection: large advantages for PATH over BUBBLE on three 
routes, but no advantage on the other two routes. Our 
preliminary analysis led to three conjectures: 

• The greater the actual selection reduction ratio, the 
greater the advantages of path selection. 

• More long straightaways in a route means greater 
advantages for path selection. 

• When the optimal nodes for a route are also the 
visually attractive nodes for that route, path selection 
will have greater advantages. 

21BPath selection wins for routes that require fewer clicks 
Data shown in XTable 2X support the first conjecture.  XTable 2X 
shows the number of nodes in each route, the optimal 
(minimal) number of nodes that had to be selected by the 
path selection tools, and the actual average number of nodes 
selected during the experiment for both path selection tools.  

Consider first the potential selection reduction ratio. 
Observe that Route 5 has the highest OSR ratio, and Route 
4 has the lowest. As we would expect, XFigure 3X shows that 
PATH had the biggest advantage over BUBBLE for Route 5, 
and no advantage for Route 4.  

However, the potential reduction in selections doesn’t tell 
the whole story.  Most dramatically, Routes 1 and 3 had the 
same OSR ratio, yet XFigure 3X shows that while PATH had a 
large advantage over BUBBLE for Route 1, the two tools were 
equivalent for Route 3. However, the actual selection ratios 
for the two routes differ dramatically: the ASR ratio for 
Route 1 was 4.7, and the ASR ratio for Route 3 was 2.3. 
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Optimal Actual  

 PATH BUBBLE-PATH 

Task Num 
Nodes 

Sels. Ratio Sels. Ratio Sels. Ratio 

1 34 7 4.9 7.2 4.7 7.1 4.8 
2 39 7 5.6 11.5 3.4 10.1 3.9 
3 39 8 4.9 17.1 2.3 16.1 2.4 
4 31 9 3.4 11.4 2.7 10.7 2.9 
5 49 6 8.2 9.9 5.0 10.7 4.6 

Table 2: Optimal and actual reductions in selection. 

22BLong straightaways favor path selection 
We next investigate the second conjecture: long  
straightaways increase the advantage of path selection. 
There are two reasons for this. First, the potential reduction 
in clicks is high. Second, we thought that this would be 
apparent to users: i.e., they would find it easy to identify the 
beginning and end nodes of the straightaway as appropriate 
targets to select. This is because these nodes are, by 
definition, “corners”, and we believed that users will be 
likely to click on corner nodes.  

We analyzed the relative time benefit of path selection as 
segment length (number of edges selected by a single click) 
increases. The intuition is that path selection should have 
greater benefits when users select a segment of length 8, for 
example, than one of length 3.  

To compute this, we wanted to compare the time it took 
users to go “the same distance” using BUBBLE and BUBBLE-
PATH, and see how the time varied with the distance. The 
following procedure formalizes this intuition: 

o for every subject u and route r: 
 for every selection made by u in route r with BUBBLE-

PATH: 
 get the start and end nodes, s and e, the segment 

length l, and the time TBP 
 compute the time it took subject u to go from s to e 

using BUBBLE; call this time TB 
 store the tuple (l, TB-TBP) 

o for all stored tuples:  
 for all values of l: 

 compute the average of TB-TBP for segments of 
that length 

XFigure 6X shows the results, graphing segment length  
against the time advantage of BUBBLE-PATH over BUBBLE 

(TB − TBP). The graph shows a linear relationship that 
supports our conjecture: the longer the segment, the greater 
the advantage of path selection. Further, the data point for 
segments of length 1 illustrates the overhead involved in 
path selection: it took users slightly more time to select a 
given segment of length 1 using BUBBLE-PATH than using 
BUBBLE. We believe that this is due to the perceptual and 
cognitive cost of identifying nodes to click on.  
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Figure 6: Longer segments increase benefits of path selection 

A simple application of these results is that path selection 
should yield little or no advantage for routes with many 
short segments. XFigure 7X supports this. For each route, it 
shows the proportion of segments (aggregated across all 
users) of different lengths. Routes 3 and 4 had the largest 
proportion of short segments, and the smallest proportion of 
long segments, and BUBBLE-PATH had the smallest time 
advantage over BUBBLE for these routes.F

2
F Routes 1, 2, and 5 

had the most longer segments, and the fewest segments of 
length 1, and BUBBLE-PATH had the largest time advantage 
over BUBBLE for these routes. 

23BWhat makes a node an attractive target? 
The final conjecture is that path selection would not confer 
advantages when optimal nodes and attractive nodes do not 
align well. This situation would occur in routes with high 
potential selection reduction ratios, but low actual ratios. 
We identified several characteristics of a node that we 
thought might change the likelihood of being selected: 

o Angle – the angle between the two edges on a route 
that impinge on a node. 

o Segment position – this is a proxy for how far along in 
a straight segment a node is, formalized as the number 
of previous nodes with angle < 5º. 

o Bubble target area – since the size of the bubble 
target for a node depends on how close other nodes are, 
this is a proxy for visual density. Intuitively, higher 
density makes it harder to distinguish an individual 
node and thus may decrease its selection probability. 

                                                           
2 PATH had no advantage for these routes. In additional 
analysis, we found that subjects were very consistent in the 
nodes they selected with PATH and BUBBLE-PATH. Thus, we 
expect to see the same results if we do the analysis of 
Figure 7 with PATH instead of BUBBLE-PATH. 
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Figure 7: Segment lengths for each experimental route 

We experimented with machine learning models that used 
these factors to predict whether a node would be selected. 
We divided all the nodes in all the routes – a total of 192 – 
into 3 categories based on how many subjects selected them 
using PATH. 
o Rare: nodes selected by fewer than 5 (out of 15) 

subjects. 
o Sometimes: nodes selected by at least 5 and no more 

than 8 subjects. 
o Frequent: nodes selected by at least 9 subjects. 

We tried out several of the learning algorithms included in 
the Weka software (http://www.cs.waikato.ac.nz/ml/weka/), 
frequently achieving over 90% classification accuracy. We 
then manually examined several of the best decision-tree 
rule sets. Surprisingly, these rule sets achieved such high 
accuracy using only the angle factor. After manually 
removing some redundant clauses, we ended up with a 
simple classification rule: category is Rare if angle < 6º, 
category is Sometimes if 6° ≤ angle  ≤ 33º, and category is 
Frequent otherwise. 

This rule says that the more a node is “like a corner”, the 
higher the probability of user acquisition. Classification 
accuracy for these rules is 98% (188/192); the confusion 
matrix is shown in XTable 3X. 

 Classified as 
Actual category Rare Sometimes Frequent 
Rare 135 - - 
Sometimes 1 4 3 
Frequent - - 49 

Table 3: Confusion matrix for selection prediction rules 

The relationship between angle and probability of 
acquisition is further illustrated in XFigure 8X.  
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Figure 8: Effect of turn angle on probability of acquisition 

The rules are exemplified by a visualization of the  
selection data from the PATH tool for Route 1 (Figure 9) and 
Route 3 (Figure 10).  The key to the visualization is:   
 A square is displayed for any node that any subject 

selected (with PATH). 
 A thick black border indicates optimal nodes; a gray 

border indicates non-optimal nodes. 
 The number in each square shows the proportion of 

subjects who clicked on that node.  

 

Figure 9: Selection data for Route 1 
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Figure 10: Selection data for Route 3 

Route 1. Path selection had a large time advantage for this 
route. It has high OSR and ASR ratios, and it consists 
almost entirely of long straightaway segments. The optimal 
nodes are all corners, and all the corners are optimal.  

Route 3. Path selection had no advantage for this route. It 
has a high OSR ratio, but a low ASR ratios. It contains 
many short segments. Even worse, while all the optimal 
nodes are corners, there are many corners that are not 
optimal, and the data confirm that these non-optimal corner 
nodes are frequently selected. 

24BDiscussion: Applications and future directions 
Path selection can be applied directly in any mapping 
application that lets users define routes. Even if it applied 
only to mapping applications, it still would be a significant 
contribution, since such applications are important and 
increasingly common. However, we believe it is useful for 
any application where the data being manipulated form a 
graph, and users want to define paths through that graph. 
Such applications include biological networks (e.g., gene 
expression relationships), anatomical systems, architectural 
diagrams and floor plans, and flow charts.   

An important point is that the A* algorithm we use to 
compute best path extensions gives us flexibility when 
moving to different domains. A parameter to the algorithm, 
the cost function, controls what path the algorithm 
computes; for our purposes, we use distance (shorter is 
better). However, if the best path in (say) a gene expression 
network is not based on distance but on the probability of a 
gene being realized, the only modification needed would be 

to define a cost function based on probability (or whatever 
would make the path extension best match the user’s 
expectation). 

Second, since in many applications a user’s desired route is 
not known a priori, a promising approach is to dynamically 
predict what nodes a user is most likely to click on at any 
given time. We can use three factors to make such 
predictions: (a) history of selections by this and other users, 
(b) properties of edges other than distance that may make 
them likely to be added to a route (e.g., generic bikeability 
scores or user preferences), and (3) the direction of the 
user's mouse motion (for example, as done by [X3X]). Once 
likely nodes are identified, they can be made more visually 
attractive (e.g., by displaying an orange circle like we did in 
the BUBBLE tool) and easier to select (perhaps by letting their 
bubble target areas grow larger by stealing visual space 
from nearby, less-promising nodes, or just by making them 
larger in control space [X4X]).  

Third, our analysis of the conditions when path selection 
works best suggests another experiment. We could test path 
selection with a set of routes that vary precisely along the 
factors we identified, e.g., turn angle of optimal and non-
optimal nodes, length of straightaways, and visual density.  

Fourth, we would like to compare path selection to Google 
Maps’ “route-then-refine” technique. Google Maps lets 
users modify an automatically generated route from point A 
to point C by allowing a new point B to be added in the 
middle of the route. This creates a new route from A to C 
that is the composition of a route from A to B and a route 
from B to C. It is an open question how well this approach 
works in practice for domains such as bicycling and how it 
compares to path selection. Several factors may influence 
the relative success of the two techniques, and thus should 
be controlled in an experimental evaluation: (1) Path 
length. We think path selection is likely to work better for 
shorter paths. For longer paths, the picture is less clear, and 
is likely to depend on (2) number of modifications required. 
The work of refining a route in Google Maps is non-trivial: 
a user must select a part of the route to move, identify 
where to move it to, and then evaluate the new route. 
Further, these tasks may require panning and zooming, with 
multiple visits to particular map regions. 

Finally, another potential technique for defining a path 
through a graph is simply to let users “draw” the path, i.e., 
move the cursor along the desired path without clicking 
objects. The system then could add edges to the route 
whenever a complete edge is traversed (or some similar 
criterion).  This is rather like letting users “steer” along the 
desired path [X1X]. A step to assess the promise of this 
technique is to log use of our current path selection 
technique at the mouse motion – not just mouse click – 
level. This would let us see whether users typically do steer 
along a path or whether they “cut corners” to reach desired 
nodes. As with other potential techniques, making the 
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design details right is challenging; for example, the 
conditions under which an edge is added to a route must 
reflect user expectations. 

7BSUMMARY 
We present a novel technique for selecting routes in a graph 
based on dynamic shortest-path computation and 
continuously updated visual feedback. The technique adds 
significant benefits beyond state-of-the-art-techniques for 
selecting single objects: faster route selection, fewer errors, 
and greater user satisfaction. Our analysis revealed what 
properties of routes make this new technique especially 
beneficial: long straight segments and a close alignment 
between optimal and visually attractive nodes. 
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