
 1

Path Selection: A Novel Interaction
Technique for Mapping Applications

Michael Ludwig, Reid Priedhorsky, Loren Terveen
GroupLens Research, Department of Computer Science and Engineering

University of Minnesota, Minneapolis, Minnesota, USA
{mludwig, reid, terveen}@cs.umn.edu

0BABSTRACT
Many online mapping applications let users define routes,
perhaps for sharing a favorite bicycle commuting route or
rating several contiguous city blocks. At the UI level,
defining a route amounts to selecting a fairly large number
of objects – the individual segments of roads and trails that
make up the route. We present a novel interaction technique
for this task called path selection. We implemented the
technique and evaluated it experimentally, finding that
adding path selection to a state-of-the-art technique for
selecting individual objects reduced route definition time by
about a factor of 2, reduced errors, and improved user
satisfaction. Detailed analysis of the results showed path
selection is most advantageous (a) for routes with long
straight segments and (b) when objects that are optimal
click targets also are visually attractive.

10BAuthor keywords
Path selection, selection techniques, bubble targets, bubble
cursors, routing.

11BACM classification keywords
H5.2. [User Interfaces]: Graphical user interfaces,
interaction styles.

1BINTRODUCTION
Over the past few years, mapping applications have become
popular on the World Wide Web. Systems like MapQuest
and Google Maps let users search and browse within
geographic regions. Many also allow users to define routes
and share them with other users. This is particularly popular
in recreational applications like bicycling, running, and
hiking, where individual users have useful personal
experience and are eager to share it [X17X].

Typically, systems that support route definition do so with
an interface that lets users indicate a route by drawing it on

top of the map. However, existing route definition
techniques have several problems. First, nearly all of them
are built on top of Google Maps or one of its peers. As we
have pointed out previously [X18X], these systems have a
major limit: users cannot directly interact with the actual
geographic data. This precludes important functions such as
tagging and rating geographic objects, which enable
powerful features like personalized route finding. For the
current purpose, the relevant point is that users create routes
by drawing lines in a completely separate layer overlaid
atop the “real” road segments; i.e., the only link between
the routes and the roads is visual co-location.

The Cyclopath system (http://cyclopath.org) does let users
interact with the geographic data; a user defines a route by
selecting the edges within the transportation graph (i.e.,
road or trail blocks) that comprise the route. However, this
raises a second, different problem: as Figure 1 shows, even
short routes consist of many individual edges. This turns
route definition into a tedious multiple selection task.

Figure 1: This short route – less than 2 miles – includes
about 20 distinct edges of the transportation graph.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 3–9, 2009, Boston, MA, USA.
Copyright 2009 ACM 978-1-60558-246-7/08/04…$5.00

 2

Our work addresses this problem. We designed and
implemented path selection, a novel technique that
dynamically computes the shortest path from the most
recently selected node to the node nearest the cursor.
Continuously updated visual feedback shows the shortest
path, and when a user selects the next node, the entire path
is added to the route. While developed for route selection,
we believe this technique is useful for any application with
graph data where users want to define paths through that
graph. We empirically compared this technique to a state-of-
the-art single selection technique, and found that adding
path-finding results in faster route definition and greater
user satisfaction. Detailed analysis identified structural
properties of routes and nodes that determine how much
path selection will help; for example, long straight
segments within a route result in greater advantages.

The remainder of the paper is organized as follows. First,
we survey related work. Next, we describe the context for
our research and detail the selection tools we implemented.
We then present the design of our experimental evaluation,
show basic performance and user satisfaction results, and
analyze the results in detail. Lastly, we identify areas for
future research and conclude with a brief summary.

2BRELATED WORK

12BMapping and routing applications
Many applications let users define and share routes through
a road or trail map. A typical function is to let communities
of users share knowledge that is valuable and hard to come
by. For example, one could share a Google Maps tour of
historical sites in Boston or a Bikely.com route of a safe
bicycle commute into downtown. Counts & Smith created
a research prototype aimed at sharing “recreational” routes,
e.g., for runners, cyclists, or skiers[X7 X]. Their system let
users capture routes with GPS devices and upload route
data to a map interface. As mentioned, in both the route-
drawing and GPS-upload technique, the routes are weakly
associated with the underlying geographic graph, linked
only by visual co-location. We want routes to be defined
directly in terms of the geographic data. This (a) requires
exposing the geographic data to users for manipulation, and
(b) transforms the process of route definition into a multiple
selection task. We elaborate this point in our discussion of
Cyclopath below.

Recently, Google Maps enhanced its automated route finder
to allow a user to modify a route by moving a point on the
route, causing the route finder to compute a new route from
the start to destination that includes the new intermediate
point. We compare this interesting technique to ours in the
Discussion section below.

13BSingle target selection
The problem of selecting single targets – e.g., objects in a
drawing tool or items in a menu – is one of the most studied
in HCI. Work typically is organized around Fitts’

Law [X9 X, X14X]. The intuition of Fitts’ Law is simple: it says
that the time to acquire a target increases as the distance to
the target increases, and decreases as the size of the target
increases. Many research projects have sought to create
improved selection techniques, seeking ways to either
increase target size or decrease distance to the target.

To reduce the distance required to move the cursor to a
target, researchers have invented techniques such as
analyzing cursor motion to bring virtual proxies of targets
towards the cursor [X3X] or jumping the cursor across empty
spaces directly to potential targets [X11X]. However, neither of
these techniques works well in interfaces that are dense
with many potential targets – which is precisely what a map
interface is, with targets like roads and points of interest
often within a few dozen pixels of each other.

Increasing target size does not require changing the visual
display. Instead, effective selection size can be manipulated
by creating a larger activation zone around either targets [X6X,
X15X, X16X, X20X] or the cursor [X12X, X19X]. Some techniques [e.g., X4X]
combine distance decreasing and size increasing. Again,
however, these techniques tend to suffer in target-dense
environments: as a user moves toward a goal target,
intervening targets slow down the cursor.

Bubble cursors [X10X] are another technique for increasing
cursor activation area. As a user moves the cursor, the
system computes and displays a “bubble” that is centered
around the cursor and envelops the nearest target. The area
for any target is computed using Voronoi regions [X1 X], which
take into account the distance of that target to other nearby
targets. The dynamic area computation makes this method
work better in target-dense environments. Experiments
showed significant performance benefits; however, bubble
cursors do not address the problem that route selection
requires clicking on many individual targets.

3BRESEARCH CONTEXT AND DESIGN RATIONALE
Cyclopath [X18X] is the context for our research. A web-based
mapping application with an interface that works similarly
to Google Maps, Cyclopath is targeted to the route finding
needs of bicyclists. The critical difference is that Cyclopath
is a geowiki, meaning that all data can be edited by users.
Users can annotate and rate edges of the transportation
graph (i.e., segments of road or trail between two nodes),
and can edit – modify, delete, and add – the geometry and
topology of the graph and attributes of its edges.

In Cyclopath, users do not simply draw lines to indicate a
route, they select objects (nodes or edges) in the map. Users
define routes for two main purposes:
• Mass rating or annotation of a sequence of edges, e.g.,

rating the whole sequence as “good” or adding a note
about heavy traffic during morning rush hour.

• Sharing routes with other users, e.g., creating and
sharing a favorite ride by the river (a planned feature
but one that is not yet implemented).

 3

As noted above, the simple 2-mile route shown in XFigure 1X
consists of about 20 individual edges; some routes can be
considerably longer, making route definition techniques
that require users to select dozens or hundreds of individual
objects tedious.

When analyzing design possibilities for route selection
tools, we considered two main approaches. The first was
making it easy to select individual nodes; we looked to
state-of-the-art work on selecting individual targets,
specifically bubble cursors [X10X] and bubble targets [X6X].

The second approach was to reduce the number of nodes
users had to select to define a path. We were inspired by
Cyclopath’s route-finding feature. After a user selects one
node (the anchor) and then moves the cursor, the system
continuously computes the shortest path from the anchor to
the node nearest the cursor. Then, if the user clicks, the
entire shortest path is added to the route (see Figure 2).

Taking the cross product of these two approaches yields a
2×2 design space, as shown in XTable 1X. While we believed
that a tool that used both bubble targets and path-finding
would work best, implementing all four designs let us
quantify and compare the benefits of each of the pure
techniques and how much they improve over a baseline.
We next present design details for each of the four tools.

Path-finding? Bubble
targets? No Yes

No CTRL-CLICK PATH

Yes BUBBLES BUBBLE-PATH

Table 1: Design space for path selection tools

CTRL-CLICK: Standard multiple selection
For a simple baseline, we chose the technique for selecting
multiple objects that is implemented in widely used
applications like file browsers and drawing programs:
clicking on an edge selects it. (Selected edges are
surrounded by a thick blue outline in all tools.) Clicking on
an edge with the CTRL key down toggles its selection state:
if it was not selected, it is added to the set of selected edges,
and if it was selected, it is removed.

This tool does not enforce route semantics. That is, a user
can select non-contiguous edges and can select the edges on
a route in any order. We did not expect this tool to perform
well. Rather, it served as a state-of-the-practice baseline for
comparison to the advanced tools.

BUBBLES: Bubble targets / cursors
The next tool facilitates the selection of individual targets,
and is based on the bubble cursors and bubble targets
techniques. While one might think we could simply modify
CTRL-CLICK to use bubble targets (cursors), the properties of
our mapping interface forced several revisions.

First and most important, we decided it would be visually
awkward to draw bubbles around edges. Because edges
have irregular shapes and varying lengths, bubbles of
different sizes and shapes would be continually appearing,
growing, shrinking, and disappearing. Thus, we decided to
make nodes the targets of selection. To select an edge, a
user must select both of the edge’s nodes in turn.
(Implementing bubble targets with edges as targets would
be an interesting alternative; creating bubbles that are
visually appealing and readily comprehensible certainly
poses a challenging visual design problem.)

Second, making nodes the targets of selection requires
using limited knowledge of the transportation graph to
constrain selection. After selecting one node, the only valid
targets are nodes directly reachable (via a single edge) from
the just-selected node. Continually updated visual feedback
(small orange circles) indicates valid targets.

Finally, we felt that warping the cursor would be visually
confusing and unappealing in the target-dense environment
of a mapping application. Therefore, we chose to draw
bubble targets around the targeted node using the Voronoi
method of Grossman [X10X] to compute the area of the bubble.

As the BUBBLES and CTRL-CLICK tools differ in several ways,
the reason for any performance differences between the two
will not be clear. However, testing both still furthers our
research goals, because our primary aim is to compare the
benefits derived from a state-of-the-research single target
selection technique (BUBBLES) with our innovative path
selection technique. CTRL-CLICK serves as a “sanity check” to
verify that our advanced methods were improvements over
a very simple technique.

PATH: Continuous path-finding and visual feedback
Like the BUBBLES tool, the PATH tool is node-based.
However, it does not use bubbling; targets (nodes) have the
same constant size in both visual and motor space. Instead,
it uses continuous path-finding to let users short-circuit the
process of selecting each of the many nodes in a typical
route. Thus, the benefit of this approach is reducing the
number of selections required to select an entire route.

At all times during the route selection process, the system
computes the shortest path through the graph from the last
selected node (the anchor) to the node nearest the cursor
(when it is within 40 pixels). It does this using the A*
search algorithm. When the user clicks on a node, the entire
shortest path is added to the route.

The tool shows a preview of what selecting a particular
node would do: the continuously-updated shortest path
from the anchor to that node is indicated with a green
highlight. We call this the path extension.

14BBUBBLE-PATH: Continuous path-finding + bubble targets
Our final tool simply combines the properties of the two
previous tools: bubble targets plus path-finding.

 4

15BImplementation details
Cyclopath is implemented as a Flex application, written in
the ActionScript language and viewed using the Adobe
Flash Player browser plugin. All the selection tools are
implemented in ActionScript and run locally in the browser.
Thus, even though Cyclopath is web-based, selection does
not require fetching data from the server. This makes it
possible for all the selection tools, even the ones that do
path-finding, to operate without noticeable lag.

16BPreliminary analysis and terminology
As we have noted, the obvious advantage of path selection
is that it can reduce the number of objects that must be
selected to define a route. The route shown in Figure 2
below consists of 38 edges; however, with path-finding,
only 7 selections are needed to select the entire route. We
use the term optimal to denote the nodes that comprise the
minimal set necessary to select a route. For a given route,
we define the optimal selection reduction ratio (OSR ratio)
as the total number of nodes in the route divided by the
number of optimal nodes. Routes with many long
straightaways, i.e., long sequences of contiguous edges that
are more or less parallel to each other (see Figures 2 and 9
below), have high OSR ratios.

However, a high OSR ratio does not guarantee gains from
using path selection. Path selection imposes a new
perceptual/cognitive task: users must identify which nodes
to select. They do this by moving the cursor to the vicinity
of a candidate, then evaluating the path extension visual
feedback to determine if (a) the path extension is on the
desired route, and (b) if it advances the route “far enough”
(an inherently subjective judgment). Thus, it is possible that
identifying nodes to select is too much work; if so, path
selection tools might actually be slower. Put another way:
path selection suffers when optimal nodes are difficult to
identify or visually “attractive” nodes are not optimal (we
investigate below what makes a node attractive).

Therefore, we evaluate the four tools experimentally, using
a number of routes with different characteristics.

4BEXPERIMENT
The subjects were students and staff at the University of
Minnesota. We recruited subjects using relevant email lists,
posters, and personal contacts. We ended up with 15
subjects, 8 women and 7 men ages 18 to 30. All subjects
reported themselves to be daily computer users and
occasional users of Web-based mapping applications.
Subjects were given a $10 participation incentive.

The experiment was conducted on a 2.2Ghz MacBook Pro
with a 15” built-in LCD display at 1440x900 resolution.
Subjects used a mouse for input.

17BDesign
The experiment was a within-subjects design. Each subject
used all four of the selection tools. We defined 7 different

routes for the experiment: 2 practice routes and 5 test routes
for measuring performanceF

1
F. The test routes vary in factors

such as the number of long straightaways, number of
corners, node density, etc. The overall experimental flow
for each subject was:

• Introduction to the experiment.
• For each of the four selection tools:

o Experimenter demonstrated the tool
o Subject used the tool for 2 practice routes.
o Subject asked clarification questions (if desired).
o Subject used the tool for the 5 test routes.
o Subject completed a user satisfaction survey for that

tool. We selected (and adapted) a subset of questions
from the QUIUS survey [X5 X].

Each subject had a unique permutation of tool order and test
route order. For example, one subject may have done the
test routes in the order 3, 2, 5, 1, 4 (for all tools), and may
have used the tools in the order BUBBLE, CTRL-CLICK, PATH,
BUBBLE-PATH. Order of tools for subjects was controlled as
follows: we generated all 24 possible permutations of the
four tools, randomized the set, then assigned tool orderings
to subjects according to this order.

Routes were indicated with a dark blue line through the
relevant edges, with start and end nodes marked. Figure 2 is
an annotated illustration of what a subject might see while
using BUBBLE-PATH for Experimental Route 2. Route
selection is complete when a subject selects every edge on
the route, and no edge not on the route is selected.

All user interaction events were logged and timestamped.
Panning and zooming were disabled to create a consistent
environment for all subjects.

18BEvaluation metrics
To compare performance across the tools, we computed the
following metrics:
• Time to select a route.
• Errors: clicks that selected either no node or a node

not on the route.
• Number of nodes selected for a route; this is relevant

only for the path selection tools.
• Actual selection reduction ratio (ASR ratio): the

number of nodes in a route divided by the (average)
number of clicks subjects took to select that route. This
is relevant only for path selection tools.

We derive several additional metrics from these basic ones,
introducing them as appropriate below.

1 In actual use, a desired route is known only to the user
who is selecting it. However, for experimental purposes, we
wanted all subjects to use the same routes.

 5

 Unselected part of routeNodes –
valid targets

Bubble target around
nearest node

Start and end
points for route

Selected
route so far

Path extension if
target is selected

Figure 2: The BUBBLE-PATH tool while in the process of selecting Test Route 2. Like BUBBLE-PATH, the BUBBLE tool uses bubble
targets (but not path selection), and PATH uses path selection (but not bubble targets). (This figure is best viewed in color.)

5BRESULTS
We first present basic performance results, then describe
findings of the user satisfaction survey. We follow with a
detailed analysis that explains the performance results.

19BPerformance: Time and errors
XFigure 3X shows the average time subjects took to complete
each task (test route) with each tool. There were significant
differences among the tools for all routes (ANOVA;
p < .01). Follow-up T-tests showed that all differences
between pairs of tools for a route were significant, with
three exceptions. For Routes 3 and 4, BUBBLES and PATH
were indistinguishable, and for Route 5, BUBBLES and
BUBBLE-PATH were indistinguishable.

The number of errors was low for all tools. However,
ANOVA did show significant differences for each route
(p ≤ 0.04). As XFigure 4X shows, CTRL-CLICK fared the worst.
This is what we expected: selecting irregular and varying
edge shapes is harder, and thus should be more error-prone.
Follow-up T-tests showed that CTRL-CLICK was worse than

all the other tools for routes 1, 3, and 5 (p ≤ 0.02), and was
worse than BUBBLE-PATH for all routes (p < 0.01). BUBBLE-
PATH had the fewest errors for all routes except Route 5, but
the differences between it and both BUBBLE and PATH were
not significant, although there were strong trends for routes
2 and 3. BUBBLE and PATH were roughly comparable: except
for Route 5, the average number of errors was similar. For
Route 5, PATH was better than BUBBLE (T-test; p = 0.01).

We offer a caveat in interpreting these results. As discussed
below, subjects made many more selections with BUBBLE
than with path selection tools. Thus, the proportion of
erroneous clicks made with BUBBLE always was lower than
PATH, and usually was lower than BUBBLE-PATH. There is no
obvious right measure – absolute or proportional number of
errors – the whole point of path selection is to reduce the
number of clicks needed to select a route. However, the
proportional analysis confirms an obvious hunch: bubble
targets make each selection act easier, and path selection
does not. Therefore, selection errors should decrease for the
tools that use bubble targets, BUBBLE and BUBBLE-PATH.

 6

Time Per Route Per Tool

0

10

20

30

40

50

60

1 2 3 4 5

Route

Se
co
nd

s

Ctrl‐Click

Bubbles

Path

Bubble‐Path

Figure 3: Task completion times for each route and tool

20BUser satisfaction: Survey
XFigure 5X summarizes the survey responses. There are
several significant differences, as well as interesting trends.
BUBBLE-PATH was always either significantly preferred over
the other tools or statistically indistinguishable from them.
One notable difference was seen for the “Overall: Terrible
to Wonderful” question; an ANOVA showed significant
differences (p < 0.01), and pairwise T-tests showed BUBBLE-
PATH rated higher than all the other tools (p < 0.01).
Another important difference was for the “Route Speed:
Slow to Fast” question (ANOVA, p < 0.01), which
measured how fast users perceived route construction to be.
There was a trend favoring BUBBLE-PATH over PATH (p =
0.057), and BUBBLE-PATH was rated significantly higher than
BUBBLE and CTRL-CLICK (p < 0.01). For the other Overall
question, “Frustrating to Easy”, there was a trend favoring
BUBBLE-PATH over PATH (p = 0.08) and BUBBLE (p = 0.09), and
all three of these tools were significantly higher than the
baseline CTRL-CLICK (p < 0.01).

On the other hand, for questions that assessed ease of use,
simplicity, and reliability, there were no significant
differences, and BUBBLE-PATH and BUBBLE typically had
nearly identical means, with PATH somewhat lower. We think

Errors Per Route Per Tool

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5

Route

N
um

be
r o

f E
rr

or
s

Ctrl-Click
Bubbles
Path
Bubble-Path

Figure 4: Errors for each route and tool

Figure 5: Survey results

there are two reasons for this. First, PATH presented the
smallest selection targets to users, and thus an essential part
of the task – moving the cursor into the target area – was
difficult. Second, path selection adds an element of
unpredictability to the selection task.

6BANALYSIS: WHEN PATH SELECTION DOES (NOT) HELP
We wanted to understand in more detail the properties of
routes that led to different levels of benefit for path
selection: large advantages for PATH over BUBBLE on three
routes, but no advantage on the other two routes. Our
preliminary analysis led to three conjectures:

• The greater the actual selection reduction ratio, the
greater the advantages of path selection.

• More long straightaways in a route means greater
advantages for path selection.

• When the optimal nodes for a route are also the
visually attractive nodes for that route, path selection
will have greater advantages.

21BPath selection wins for routes that require fewer clicks
Data shown in XTable 2X support the first conjecture. XTable 2X
shows the number of nodes in each route, the optimal
(minimal) number of nodes that had to be selected by the
path selection tools, and the actual average number of nodes
selected during the experiment for both path selection tools.

Consider first the potential selection reduction ratio.
Observe that Route 5 has the highest OSR ratio, and Route
4 has the lowest. As we would expect, XFigure 3X shows that
PATH had the biggest advantage over BUBBLE for Route 5,
and no advantage for Route 4.

However, the potential reduction in selections doesn’t tell
the whole story. Most dramatically, Routes 1 and 3 had the
same OSR ratio, yet XFigure 3X shows that while PATH had a
large advantage over BUBBLE for Route 1, the two tools were
equivalent for Route 3. However, the actual selection ratios
for the two routes differ dramatically: the ASR ratio for
Route 1 was 4.7, and the ASR ratio for Route 3 was 2.3.

 7

Optimal Actual

 PATH BUBBLE-PATH

Task Num
Nodes

Sels. Ratio Sels. Ratio Sels. Ratio

1 34 7 4.9 7.2 4.7 7.1 4.8
2 39 7 5.6 11.5 3.4 10.1 3.9
3 39 8 4.9 17.1 2.3 16.1 2.4
4 31 9 3.4 11.4 2.7 10.7 2.9
5 49 6 8.2 9.9 5.0 10.7 4.6

Table 2: Optimal and actual reductions in selection.

22BLong straightaways favor path selection
We next investigate the second conjecture: long
straightaways increase the advantage of path selection.
There are two reasons for this. First, the potential reduction
in clicks is high. Second, we thought that this would be
apparent to users: i.e., they would find it easy to identify the
beginning and end nodes of the straightaway as appropriate
targets to select. This is because these nodes are, by
definition, “corners”, and we believed that users will be
likely to click on corner nodes.

We analyzed the relative time benefit of path selection as
segment length (number of edges selected by a single click)
increases. The intuition is that path selection should have
greater benefits when users select a segment of length 8, for
example, than one of length 3.

To compute this, we wanted to compare the time it took
users to go “the same distance” using BUBBLE and BUBBLE-
PATH, and see how the time varied with the distance. The
following procedure formalizes this intuition:

o for every subject u and route r:
 for every selection made by u in route r with BUBBLE-

PATH:
 get the start and end nodes, s and e, the segment

length l, and the time TBP
 compute the time it took subject u to go from s to e

using BUBBLE; call this time TB
 store the tuple (l, TB-TBP)

o for all stored tuples:
 for all values of l:

 compute the average of TB-TBP for segments of
that length

XFigure 6X shows the results, graphing segment length
against the time advantage of BUBBLE-PATH over BUBBLE

(TB − TBP). The graph shows a linear relationship that
supports our conjecture: the longer the segment, the greater
the advantage of path selection. Further, the data point for
segments of length 1 illustrates the overhead involved in
path selection: it took users slightly more time to select a
given segment of length 1 using BUBBLE-PATH than using
BUBBLE. We believe that this is due to the perceptual and
cognitive cost of identifying nodes to click on.

Time Advantage of BUBBLE-PATH over BUBBLES

-2

0

2

4

6

8

10

0 2 4 6 8 10 12 14

Segment Length

Se
co

nd
s

Figure 6: Longer segments increase benefits of path selection

A simple application of these results is that path selection
should yield little or no advantage for routes with many
short segments. XFigure 7X supports this. For each route, it
shows the proportion of segments (aggregated across all
users) of different lengths. Routes 3 and 4 had the largest
proportion of short segments, and the smallest proportion of
long segments, and BUBBLE-PATH had the smallest time
advantage over BUBBLE for these routes.F

2
F Routes 1, 2, and 5

had the most longer segments, and the fewest segments of
length 1, and BUBBLE-PATH had the largest time advantage
over BUBBLE for these routes.

23BWhat makes a node an attractive target?
The final conjecture is that path selection would not confer
advantages when optimal nodes and attractive nodes do not
align well. This situation would occur in routes with high
potential selection reduction ratios, but low actual ratios.
We identified several characteristics of a node that we
thought might change the likelihood of being selected:

o Angle – the angle between the two edges on a route
that impinge on a node.

o Segment position – this is a proxy for how far along in
a straight segment a node is, formalized as the number
of previous nodes with angle < 5º.

o Bubble target area – since the size of the bubble
target for a node depends on how close other nodes are,
this is a proxy for visual density. Intuitively, higher
density makes it harder to distinguish an individual
node and thus may decrease its selection probability.

2 PATH had no advantage for these routes. In additional
analysis, we found that subjects were very consistent in the
nodes they selected with PATH and BUBBLE-PATH. Thus, we
expect to see the same results if we do the analysis of
Figure 7 with PATH instead of BUBBLE-PATH.

 8

Selections by length

1 1

1

1 1
2

2

2

2

2
3-5

3-5
3-5

3-5

3-5

>5

>5

>5
>5

>5

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Route

B
lo

ck
 L

en
gt

h >5

3-5

2

1

Figure 7: Segment lengths for each experimental route

We experimented with machine learning models that used
these factors to predict whether a node would be selected.
We divided all the nodes in all the routes – a total of 192 –
into 3 categories based on how many subjects selected them
using PATH.
o Rare: nodes selected by fewer than 5 (out of 15)

subjects.
o Sometimes: nodes selected by at least 5 and no more

than 8 subjects.
o Frequent: nodes selected by at least 9 subjects.

We tried out several of the learning algorithms included in
the Weka software (http://www.cs.waikato.ac.nz/ml/weka/),
frequently achieving over 90% classification accuracy. We
then manually examined several of the best decision-tree
rule sets. Surprisingly, these rule sets achieved such high
accuracy using only the angle factor. After manually
removing some redundant clauses, we ended up with a
simple classification rule: category is Rare if angle < 6º,
category is Sometimes if 6° ≤ angle ≤ 33º, and category is
Frequent otherwise.

This rule says that the more a node is “like a corner”, the
higher the probability of user acquisition. Classification
accuracy for these rules is 98% (188/192); the confusion
matrix is shown in XTable 3X.

 Classified as
Actual category Rare Sometimes Frequent
Rare 135 - -
Sometimes 1 4 3
Frequent - - 49

Table 3: Confusion matrix for selection prediction rules

The relationship between angle and probability of
acquisition is further illustrated in XFigure 8X.

Acquisition Probability vs. Turn Angle

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

Turn Angle

A
cq

ui
si

tio
n

P
ro

ba
bi

lit
y

Figure 8: Effect of turn angle on probability of acquisition

The rules are exemplified by a visualization of the
selection data from the PATH tool for Route 1 (Figure 9) and
Route 3 (Figure 10). The key to the visualization is:
 A square is displayed for any node that any subject

selected (with PATH).
 A thick black border indicates optimal nodes; a gray

border indicates non-optimal nodes.
 The number in each square shows the proportion of

subjects who clicked on that node.

Figure 9: Selection data for Route 1

 9

Figure 10: Selection data for Route 3

Route 1. Path selection had a large time advantage for this
route. It has high OSR and ASR ratios, and it consists
almost entirely of long straightaway segments. The optimal
nodes are all corners, and all the corners are optimal.

Route 3. Path selection had no advantage for this route. It
has a high OSR ratio, but a low ASR ratios. It contains
many short segments. Even worse, while all the optimal
nodes are corners, there are many corners that are not
optimal, and the data confirm that these non-optimal corner
nodes are frequently selected.

24BDiscussion: Applications and future directions
Path selection can be applied directly in any mapping
application that lets users define routes. Even if it applied
only to mapping applications, it still would be a significant
contribution, since such applications are important and
increasingly common. However, we believe it is useful for
any application where the data being manipulated form a
graph, and users want to define paths through that graph.
Such applications include biological networks (e.g., gene
expression relationships), anatomical systems, architectural
diagrams and floor plans, and flow charts.

An important point is that the A* algorithm we use to
compute best path extensions gives us flexibility when
moving to different domains. A parameter to the algorithm,
the cost function, controls what path the algorithm
computes; for our purposes, we use distance (shorter is
better). However, if the best path in (say) a gene expression
network is not based on distance but on the probability of a
gene being realized, the only modification needed would be

to define a cost function based on probability (or whatever
would make the path extension best match the user’s
expectation).

Second, since in many applications a user’s desired route is
not known a priori, a promising approach is to dynamically
predict what nodes a user is most likely to click on at any
given time. We can use three factors to make such
predictions: (a) history of selections by this and other users,
(b) properties of edges other than distance that may make
them likely to be added to a route (e.g., generic bikeability
scores or user preferences), and (3) the direction of the
user's mouse motion (for example, as done by [X3X]). Once
likely nodes are identified, they can be made more visually
attractive (e.g., by displaying an orange circle like we did in
the BUBBLE tool) and easier to select (perhaps by letting their
bubble target areas grow larger by stealing visual space
from nearby, less-promising nodes, or just by making them
larger in control space [X4X]).

Third, our analysis of the conditions when path selection
works best suggests another experiment. We could test path
selection with a set of routes that vary precisely along the
factors we identified, e.g., turn angle of optimal and non-
optimal nodes, length of straightaways, and visual density.

Fourth, we would like to compare path selection to Google
Maps’ “route-then-refine” technique. Google Maps lets
users modify an automatically generated route from point A
to point C by allowing a new point B to be added in the
middle of the route. This creates a new route from A to C
that is the composition of a route from A to B and a route
from B to C. It is an open question how well this approach
works in practice for domains such as bicycling and how it
compares to path selection. Several factors may influence
the relative success of the two techniques, and thus should
be controlled in an experimental evaluation: (1) Path
length. We think path selection is likely to work better for
shorter paths. For longer paths, the picture is less clear, and
is likely to depend on (2) number of modifications required.
The work of refining a route in Google Maps is non-trivial:
a user must select a part of the route to move, identify
where to move it to, and then evaluate the new route.
Further, these tasks may require panning and zooming, with
multiple visits to particular map regions.

Finally, another potential technique for defining a path
through a graph is simply to let users “draw” the path, i.e.,
move the cursor along the desired path without clicking
objects. The system then could add edges to the route
whenever a complete edge is traversed (or some similar
criterion). This is rather like letting users “steer” along the
desired path [X1X]. A step to assess the promise of this
technique is to log use of our current path selection
technique at the mouse motion – not just mouse click –
level. This would let us see whether users typically do steer
along a path or whether they “cut corners” to reach desired
nodes. As with other potential techniques, making the

 10

design details right is challenging; for example, the
conditions under which an edge is added to a route must
reflect user expectations.

7BSUMMARY
We present a novel technique for selecting routes in a graph
based on dynamic shortest-path computation and
continuously updated visual feedback. The technique adds
significant benefits beyond state-of-the-art-techniques for
selecting single objects: faster route selection, fewer errors,
and greater user satisfaction. Our analysis revealed what
properties of routes make this new technique especially
beneficial: long straight segments and a close alignment
between optimal and visually attractive nodes.

8BACKNOWLEDGEMENTS
We thank the people who participated in our experiment
and the members of the GroupLens research group for their
support and feedback. We also thank the NSF (grants IIS-
0626930 and IIS-0534692) and the University of Minnesota
Undergraduate Research Opportunities Program for
supporting this research.

9BREFERENCES
1. Accot, J. and Zhai, S. Beyond Fitts' Law: Models for

trajectory-based HCI tasks. In Proc. CHI 1997.
2. Aurenhammer, F. and Klein, R. Voronoi Diagrams.

Chapter 5, in Handbook of computational geometry, J.
Sack and J. Urrutia, Editors. North-Holland:
Amsterdam, Netherlands. pp. 201-290, 2000.

3. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P., Bederson, B., and Zierlinger, A. Drag-and-
pop and drag-and-pick: Techniques for accessing
remote screen content on touch- and pen-oriented
systems. In Proc. Interact 2003.

4. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M.
(2004). Semantic pointing: Improving target
acquisition with control-display ratio adaptation. In
Proc. CHI 2004.

5. Chin, J. P., Diehl, V. A., and Norman, K. L..
Development of an instrument measuring user
satisfaction of the human-computer interface. In Proc.
CHI 1988.

6. Cockburn, A. and Firth, A. Improving the acquisition
of small targets. In Proc. British HCI Conference 2003.

7. Counts, S. and Smith, M. Where were we:
Communities for sharing space-time trails. In Proc.
GIS 2007.

8. http://cyclopath.org
9. Fitts, P.M. (1954). The information capacity of the

human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47. p
381-391

10. Grossman, T. and Balakrishnan, R. The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of
the Cursor's Activation Area. In Proc. CHI 2005.

11. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M.
Object pointing: A complement to bitmap pointing in
GUIs. In Proc. Graphics Interface 2004.

12. Kabbash, P. and Buxton, W. The “Prince” technique:
Fitts’ Law and selection using area cursors. In Proc.
CHI 1995.

13. MacKenzie, S. Fitts' Law as a research and design tool
in human-computer interaction. Human-Computer
Interaction, 7. p 91 – 139, 1992

14. MacKenzie, S. and Buxton, W. Extending Fitts' Law to
two-dimensional tasks. In Proc. CHI 1992.

15. McGuffin, M. (2002). Fitts' Law and expanding
targets: An experimental study and applications to user
interface design, M.Sc. Thesis, Department of
Computer Science, University of Toronto

16. McGuffin, M. and Balakrishnan, R. Acquisition of
expanding targets. In Proc. CHI 2002.

17. Priedhorsky, R., Jordan, B., and Terveen, L. How a
personalized geowiki can help bicyclists share
information more effectively. In Proc. WikiSym 2007.

18. Priedhorsky, R. and Terveen, L. The computational
geowiki: What, why, and how. In Proc. CSCW 2008.

19. Worden, A., Walker, N., Bharat, K., and Hudson, S.
Making computers easier for older adults to use: Area
cursors and sticky icons. In Proc. CHI 1997.

20. Zhai, S., Conversy, S., Beaudouin-Lafon, M., and
Guiard, Y. Human on-line response to target
expansion. In Proc. CHI 2003.

